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Abstract

This paper considers an endogenous kink threshold regression model with an unknown threshold
value in a time series as well as a panel data framework, where both the threshold variable and
regressors are allowed to be endogenous. We construct our estimators from a control function
approach and derive the consistency and asymptotic distribution of our proposed estimators.
Monte Carlo simulations are used to assess the finite sample performance of our proposed es-
timators. Finally, we apply our model to analyze the effects of COVID-19 cases on the labor

market of the US and Canada.
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1 Introduction

Threshold regression (TR) model is popularly used to capture potential shifts in economic relation-
ships; e.g., Tong (1990) and Hansen (2000). Notwithstanding, the conventional TR model requires
the regression function is discontinuous at the true threshold level. But in many empirical applica-
tions, there is no reason to expect a discontinuous regression model. As a modification, Chan and
Tsay (1998) propose a continuous threshold autoregressive model to allow for a piece-wise linear
function of the threshold variable. Notably, this model allows the threshold regression to be con-
tinuous. Still, the slope has a discontinuity at the true threshold level and, thus, is widely regarded
as a special case of the broad class of threshold autoregressive models. Extending Chan and Tsay
(1998), Hansen (2017) provides testing for a threshold effect and inference on the regression param-
eters for a continuous threshold model with an unknown threshold parameter value (hereinafter,
kink threshold regression (KTR) model). It is well established the limiting distribuition of the
least-squares estimator for the TR model is nonstandard and the estimator is super consistent. For
example, Chan (1993) establishes that the threshold parameter estimator converges to a functional
of a compound Poisson process. Adopting a “diminishing threshold effect” assumption, Hansen
(2000) shows the limiting distribution involves two independent Brownian motions. By contrast,
as shown in Hansen (2017), the limiting distribution of the least-squares estimator for the KTR
model is normal, and the convergence rate is standard root-n due to the nature of continuity.

All the above studies assume strict exogeneity in both slope regressors and the threshold vari-
able. As many practical issues of nonlinear asymmetric mechanisms are endogenously determined,
a growing body of literature has developed for the TR model to allow for endogeneity. Under
Hansen (2000)’s diminishing threshold effect framework, Caner and Hansen (2004) allow the slope
regressors to be endogenous by using the generalized method of moments (GMM) and two-stage
least squares (2SLS) method to estimate the slope parameters and the threshold parameter, re-
spectively. Inspired by the sample selection method of Heckman (1979), Kourtellos et al. (2016)
employ a control function (CF) approach to estimate the TR model with endogeneity, where they
introduce an inverse Mills ratio as a bias correction term into the regression. Following Kourtellos
et al. (2016), Christopoulos et al. (2021) use a copula method to deal with the endogenous thresh-

old variable. Yu et al. (2020) generalize the CF approach of Kourtellos et al. (2016) and classify



two groups of CF methods for the TR model with endogeneity based on the choice of variables in
the conditional set. Specifically, the first group is an extension of the 2SLS method proposed by
Caner and Hansen (2004), while another is a natural extension to the conventional CF approach
documented in Newey et al. (1999). It is worth noticing that both CF methods cannot be directly
used to estimate the KTR model with endogeneity. Essentially, even without the endogeneity, the
continuity makes the inference of the least squares estimator for the KTR model quite different
from the conventional TR model. Hidalgo et al. (2019) underscore that if we wrongly estimate a
KTR model with a TR framework of Hansen (2000), ignoring the continuity of the true model,
the Hessian matrix becomes irregular’. This causes the least squares estimator of the threshold
parameter converges at a cube root-n convergence rate, slower than the root-n convergence rate
for KTR model as shown by Hansen (2017). As a result, both CF methods proposed by Yu et al.
(2020), designing for the TR framework, cannot apply to the KTR model without deviation.2 More
recently, Kourtellos et al. (2021) extend Yu et al. (2020) to allow for the unknown endogenous form
by introducing a nonparametric bias correction term into the model. The proposed semiparametric
model bypasses any misspecification problem, but still in the framework of the TR model. Seo and
Shin (2016) consider a dynamic panel TR model with endogeneity and develop a first-differenced
GMM estimator, which allows both threshold variable and regressors to be endogenous. Yet, the
GMM method is notorious for its poor small sample performance. Under a fixed threshold ef-
fect framework of Chan (1993) and assuming i.i.d. sample, Yu and Phillips (2018) construct an
integrated difference kernel estimator(IDKE) for the threshold parameter. The most appealing
feature of the IDKE is the consistency of the estimator holds without requiring the instrumental
variables. Also, the IDKE is super-consistent for the TR model with endogenous threshold variable
and exogenous slope regressors. Nevertheless, the i.i.d. assumption broadly limits the scope of
applications for this method.

In contrast to the proliferate studies on the TR model, surprisingly, to our knowledge, no
estimation and asymptotic result has been developed for the least squares estimator of the KTR

model with endogeneity.> Thus, this paper aims to fill this gap in the literature. Following Yu

!Note that estimating the KTR model under the TR model framework violates the full rank condition that is required
for a non-degenerated asymptotic distribution of threshold estimator, see, e.g., Hansen (2000) Assumption 1.7.
?The KTR model violates the Assumption 1.9 for CF-I and IL.9 for CF-II in the Yu et al. (2020).

3We notice the first-differenced GMM estimator proposed by Seo and Shin (2016) works for the KTR model with
endogeneity. However, it is widely regarded that the GMM method has a poorer finite sample performance than



et al. (2020) and Kourtellos et al. (2021), our paper employs the CF approach to correct the
endogeneity in a KTR model. Our proposed method allows both slope regressors and the threshold
variable to be endogenous. We develop the model both in a time-series and a panel data context.
Specifically, we explore the estimation and study the asymptotic properties of the least squares
estimator for the time-series model with the weakly dependent data. For the panel, we eliminate the
time-invariant fixed effects by using the first-differencing (FD) method and derive the asymptotic
results of our proposed estimator with both large numbers of cross-section (N) and time-series (T')
observations. Similar to Hansen (2017), our proposed estimator exhibits a joint normal distribution
with a standard root-n convergence rate.

We then apply our model to test the threshold effect of COVID-19 cases on the US and Canadian
labor markets. The COVID-19 pandemic has been plaguing most economies since early 2020. Since
then, much literature has worked on measuring its (linear/nonlinear) effect on the economy. Among
others, for example, Karavias et al. (2022) consider a linear panel model with an unknown structural
break time to examine the structural effect of COVID-19 on stock returns. They find the COVID-
19 pandemic is detrimental to the stock market before the break, and, interestingly, the negative
impact vanishes afterward. For the labor market, there is a stream of literature that examines
the indirect effect of COVID-19 on the labor market, for example, measuring the impact of the
government Stay at Home/Lockdown policy on the labor market (e.g., Baek et al. (2021), Kong and
Prinz (2020)). On the other hand, another stream of literature focuses on investigating the effect of
COVID-19 on the labor market of some particular groups (e.g., Lee et al. (2021)). Yet, surprisingly,
few studies address exploring the effects of COVID-19 on the labor market integration. The fact that
the unemployment rates for most advanced economies have recovered to the pre-COVID level while
the pandemic is still ongoing indicates the potential nonlinear relationship between the COVID-19
cases and the labor market performance. Considering the nature of long-lasting and multiple waves
of COVID-19 cases, we conjecture there is a threshold effect (or a structural break) of COVID-19
cases on the unemployment rate. As such, we apply our proposed KTR model with endogeneity
to explore this potential nonlinearity. We demonstrate that, although the impact of COVID-19

on unemployment is significantly positive in both regimes, the magnitude is more prominent if the

the least squares estimator.



case number exceeds a certain level.*

The rest of the paper is organized as follows. Section 2 introduces the times-series KTR model
with endogeneity, presenting our proposed estimators’ estimation method and asymptotic proper-
ties. Section 3 extends the model to the panel context. Section 4 reports Monte Carlo simulation
results, suggesting our proposed estimator has a good small sample performance. Section 5 pro-
vides our empirical application results, while section 6 concludes the paper. We relegate all the
mathematical proofs to the Appendix.

To proceed, we adopt the following notation throughout the paper. We use subscript 0 to denote
the true parameters and the accent * to denote the estimators. We define ||-|| as the Euclidean norm.
The operators 2 and £> denote convergence in probability and distribution, respectively. We denote
(N,T) — oo as the joint convergence of N and T, when N and T pass to infinity simultaneously.

04« denotes a A x B matrix of ones and I,,, denotes identical matrix of size m.

2 Time series model

2.1 Model and estimation

Following Hansen (2017), we consider a KTR model

ye = Bro(@y — %) (ze < v0) + Bao(me — 0L (ze > Y0) + Byt +ue,t =1,...,m, (2.1)

where z; is the threshold variable, a scalar. I(-) is the indicator function and z; is an £ x 1 vector
of regressors, including an intercept term. Model (2.1) has k = 3 + £ parameters to be estimated,
including an unknown threshold value vy, which is an interior point of a compact set, I'. Denote
the true value By = (B10, B20, Bs)" and we have B € B C R¥~!, which are both (k — 1) x 1 vectors.

In the kink threshold regression framework, we allow both an endogenous threshold variable z;

and endogenous regressors z1;, where z1; is a d;1 X 1 vector and it is a subset of z; = [2];, z5,). The

*Considering the number of COVID-19 tests performed is highly associated with the cases and is irrelevant to the
unemployment rate, we use the number of COVID-19 tests performed as the instrumental variable.



reduced form equations of x; and z1; are

Tt = TyoPat + Vat (2.2)

21¢ = TPzt + Uzt (2.3)

where p,; and p.; allow to have duplicate variables, p;; is a dp; X 1 vector with dp, > 1 and p.; is a
dp. x 1 vector with dy,, > d.1. To simplify notation, we denote all instrumental variables as p;, which
includes the non-overlapping terms in p,; and p,; and p,; and p,; are allowed to share common vari-
ables. The endogeneity of the threshold variable x; and regressors z1; come from the contemporane-
ous correlation between u; and vy, where vy = [vg, vl;] is a (14+dz1) x 1 vector and Cov(vgy, vzt) # 0.
Using the control function approach, we assume E (uy|Fi—1,2¢,211) = E (w]vy) = Bjve almost
surely, where F is the smallest sigma-field generated from {(zs, 215, 22,641, Us, Ps+1) : 1 < s <t < n}

and By0 is a (1 +d,1) x 1 vector. Therefore, we have

E(ye| Fie1, @1, 210) = Brolze — v0) I (e < 70) + Bao(ze — v0) L (e = v0) + Bhoze + Baove. (2.4)

Let 8o = B20 — P10 We can rewrite model (2.1) as

yr = Bro(ze —v0) + do(e —y0) I (x: = 70) + Baozt + Bigve + &t (2.5)

where &, = uy — B)gvs. Note that, since E(g|zy, 214, Fi—1) = 0 almost surely, the integrated model
(2.5) is free of the endogenous problem. Thus, we can be estimate model (2.5) by the least squares
method.

Below, we outline the steps that are taken in the estimation procedure for model (2.5).

First step: Applying the OLS estimation to model (2.2) and (2.3), we obtain the least squares
estimator fy = (31 1 Patbh) L Yobeq Pat®es s = (Yp 1 Do) "L D1 Pz and collect the residu-
als Ogy = &4 — TipyDaty Uzt = 20 — ToyPar- Then we have 0y = [Ogr, 0"

Second step: Let § = (51,9, 85, 3})', which is a (k + dz1) x 1 vector. Then, by replacing v;



with 0, in (2.5), the least squares objective function of model (2.5) becomes

n

Sn(0,7) = % D lye = Bilwe =) = (e — N I(we > ) — Byze — Byl (2.6)

t=1

and the least squares estimator of model (2.5) solves the following optimization problem:

(0,4) = argmin S, (0,7). (2.7)
(0,y)eBxTI

Note that Sy, (6, ) is non-smooth in . Therefore, we use a grid search method empirically. For

a given v € I, we obtain the conditional least squares estimator of 6
X'y, (2.8)

where y = [y1, 42, .-, yal s X(7) = [#2(7),22(9), ., 2a()]', and ze(y) = [2e — 7, (w0 — NI (20 >

v), 24, 0) for t =1,--+ .

Next, we substitute 6 by é('y) into S,,(,v) and obtain the least squares estimator of vy as

5 = argmin S, (0(7), 7) = argmin ~ [y — X(1)0()]ly — X(1)0()]. (2.9)
~el yer M

Then, the least squares estimator for 6y is given by 6 = 8(5).

2.2 Assumptions and limiting results

Below, we list regularity assumptions used to derive the consistency and asymptotic distribution
of our proposed estimators.

Assumptions-time series. For some r > 1,

T1. (yt, @, 2, pe) is a strictly stationary, ergodic, and absolutely regular sequence with mixing
coefficients a(m) = O(m™¢) for some & > r/(r — 1);

T2. (a) Bly|*" < 0o, Blzg* < oo, E||z||"" < 00; (b) E ||vg||*" < o0, and E ||pe||*" < o0, E(pip}) is
nonsingular;

T3. infrep det Q(y) > 0, where Q(y) = Efzf(y)x}'(v)], and 7 (7) equals w¢(v) with 9, being re-

placed with wvy;



T4. z; has a density function f(z) and f(x) < f < oo over its domain for some finite constant f;

T5. (a) E(ug|Fi—1, zt, 2¢) = E(we|ve) = Bhyve almost surely for all ¢, where F; is the smallest sigma-
field generated from {(zs, zs, us, ps41) : 1 < s <t < n}; (b) {(v, Ft—1)} is a martingale difference
sequence with F(v|F;—1) = 0 almost surely;

T6. 6o # 0 and # € B C R¥+?:1, where B is compact;

T7. 7o = argmin L*(0*(v),7) is unique, where 0*(v) = Efzj(vy)a}' ()] Ez}(v)ye], L*(0,7) =

yel’
E[S:(0,7)], Si(0,7) equals Sy, (0,~) with 9, being replaced with v;, and T is compact.

In Assumptions T'1, we assume a [-mixing sequence, where the choice of 7 involves a trade-off
between the allowable degree of serial dependence and the number of finite moments; see discussions
given in Remark 2.3 of Chan and Tsay (1998) and Assumption 1.1 of Hansen (2017). Assumption
T2 contains unconditional moment conditions. Assumption T2(a) is the regular moment conditions
required and T2(b) and T5(b) ensure that the OLS estimators of the reduced form models (2.2)-
(2.3) exist and converge to the true parameter vector at the root-n rate. Assumption T3 ensures
that the parameter estimation is well defined for all v € I'. Assumption T4 makes sure our x; has a
bounded density function. Assumption T5(a) is the assumption for a linear endogenous structure,
which can be easily extended to a non-linear endogenous structure. By Assumption T6, we consider
a kink regression model. Assumption T7 is an identification assumption, similar to Assumption 2.1
of Hansen (2017).

Next, denote ¢ = (6',7)', a (k+ 1+ d,1) x 1 vector, and Let H, = H;(¢p) with

Hy(9) =~y — a7 (1)0) = wi) . (2.10)
o¢ — By — 81 (xy > )

Below, we present the limiting results of our proposed estimator.

Theorem 1-Time Series. Under Assumptions T1-T7, as n — oo, we have

Vi (6-0) SN (O,V), (2.11)

where V = Q1SQ™1, S = E (H H{e}), and Q = E(H H]), here E(H,H]) is a (k+1+d.1) x (k+

1+ d;1) matrix.



Remark 1: The proof of Theorem 1-Time series is given in the appendix. The slope and
threshold estimators converge at the square-root-n rate and are jointly normally distributed with a
non-zero asymptotic covariance matrix. By contrast, for the discontinuous TR model, the thresh-
old estimator converges faster than square-root-n, and the distribution is non-standard distributed.
Thus, the TR model’s threshold estimator is asymptotically independent of the slope estimators.
These stark differences originate from the continuous nature of the KTR function. To make in-
ference, we suggest to use the following as the estimator for the asymptotic variance-covariance

matrix

where Q = n! YiLy Hi(9)H{(9), § = n~' iy H(@)H{($)E(9) with &(9) =y — By — ) —

0(xe — ) (ze > 7) — Bgzt - Bl@t, and

lye — 23(7)6] = z:(7) _ (2.12)

1s]
Hy(¢) = =5~
t o6 =B —8l(xe > )

3 Panel model extension

Many empirical problems of nonlinear asymmetric mechanisms are explicitly within a panel data
context, including but not limited to the potential threshold effect of COVID-19 on the unemploy-
ment rate that we will discuss more in section 5. Therefore, we extend our baseline time-series
model to an endogenous kink threshold panel model with unknown fixed-effects and cross-sectional

independence. Below, we present our model, the estimation strategy, and the asymptotic results.

3.1 Model and estimation

We consider the panel data with both sufficiently large number of cross sectional units N and
number of time periods T'. To remove the time-invariant fixed effects, we apply the first-differencing

method, twisting from the within-transformation that used in Zhang et al. (2017). Our panel kink



threshold regression model is as follows

yie = Brol@it —70)I(zit < v0) + Bao(zit — Y0)I (it > o) + Bagzit + bi + wit, (3.1)

fori =1,..,N,t =1,...,T, where y; is the dependent variable, z; is a scalar threshold variable,
zit is an £ x 1 vector of time varying regressors, which may include the time effect. b; is the P
unobserved individual effect, which is independent of the errors w; for all ¢. We denote fy =
(B10, B20, Bhy)' € RF1, where k = 3 + £. The unknown threshold value 7o is an interior point of a
compact set, I'. Again, we have the endogenous threshold variable and endogenous regressors 21 ¢,
where 214 is a d.1 X 1 vector and it is a subset of 2 = [2] 44, 2 ;1. The reduced form equations of

2t and 214 are given by

zi = Wygpait + Vayit, (3.2)

z1,i = WPzt + Vst (3.3)

where p,;; and p.; allow to have common variables, p; is a dp; x 1 vector with dp, > 1
and p,; is a dy, x 1 vector with d,,; > d.;. To simplify notation, we denote all instrumental
variables by pi, including pgir, p.i and vy = [vmt,v;‘it]/, a (1 +d.) x 1 vector. In addi-
tion, we allow Cov(vgt,v.4) 7# 0. Using the control function approach, for each i, we assume
E (uit)l Fig—1, Tit, 21,) = E (uig|vi) = Bligvie almost surely, where F;; is the smallest sigma-field
generated from {(Zis, #1,is, 22,541, Wis, Pis+1) : 1L < s <t <T} and Bao is a (1 + d;1) x 1 vector.
The endogeneity of the threshold variable x;; and regressors 21 come from the contemporaneous

correlation between wu;; and vj.

Applying the first-differencing to model (3.1) and denoting g = 20 — S10 yields

Ayt = BroAzie + 00(Xit — v072) Tit (70) + B Azit + Augy, (3.4)

where Aa;s = ait — a;1—1 denotes the first difference of variable a, 7, is an m x 1 vector of ones,

and
Tit — Y0 I(zit > v0)
Xit —yom2 = and  Iy(y) =
Tig—1— 0 —I(2i1-1 > 0)



Next, we have

E(Ayit| Fit—2, Tity Ti—1, Zit, 21,i4—1, Pit) = BroATi+00(Xit—072) Lit (70) + B30 Azt +Bio Avir, (3.5)

where applying the law of iterative expectation and using the reduced form equations (3.2) and

(3.3) gives

E(uit| Fit—2, Tit, Tig—1, Zit, 21,141, Dit)

= E[E(uit| Fip—1, it 21,it) | Fit—25 Tit, Tit—1, Zit> 21,i,4—1, Dit)

= BioE (vit| Fit—2, Tits Tig—1, 2it, 21,41, Pit) = Bigvit (3.6)
and E(u;z—1|Fit—2, Tit, Tig—1, Zits 21i4-1,Pit) = B (Wig—1|Fip—2,Tiz—1,21450-1) = Biglit—1, since

future information does not affect past information.

Thus, combining (3.4) with (3.5) gives
Ay = BroAziy + 6o(Xir — vo2)Lit(0) + Ba0Azir + BhoAvie + Acyy, (3.7

where Aeyy = A — BigAvi and E(Ae; 4| Fit—2, Tit, Tit—1, Zit, 21,i4—1, Pi) = 0. Hence, by including
the auxiliary regressor Av; into the regression, our model (3.7) has no endogenous issue.
Next, we proceed to show the estimation strategy

First step: Applying the OLS estimation to model (3.2) and (3.3), we obtain the least squares

estimators:

N T N T R N T N T
= (Z me 1tpx n Z sz thzt II, = (Z sz,itplz7it)71(z sz it 21 zt

i=1 t=1 i=1 t=1 i=1 t=1 i=1 t=1

Then, we collect the residuals Adz;; = Awy — Ap;ﬁﬁx and A, = Az — Apfw.tflz. Let
Dyt = [Oayit, Dzat] -

Second step: Let 6 = (81,6, 85, 8})" € RFd1 which is a (k4 d,1) x 1 vector. Replacing Av;;

10



by Ad; in (3.5), we obtain the least squares criterion function
N T
Snr(0,7) = N(T — 3> Ay — B — §(Xip — y2)Lu(y) — By Dzt — By
1:1 t=2

Our least square estimator is the joint minimizer of Syr(6,7),

(0,4) = argmin Sy7(6,7).
(61)eBxT

For a given v € I', we get the conditional least squares estimator of 6,
N

T
6(y) = argmin ———— Z Z Ayir — Axfy(7)0)%,

6eB N N 1 i=1 t=2

where Azip(7) = [Azir, (X —772)Li(7), Asly, AdL ).

By solving (3.10), we have

N T T
= [ZZA Lt A‘rzt 71 ZZA Lt(’y Aytt

i=1 t=2 i=1 t=2

(3.8)

(3.9)

(3.10)

(3.11)

Empirically, we can use a grid search method to obtain 4 by minimizing the sum squared error

criterion function

N T
§ = argmin Sy7(6(v),v) = argmin ———— Ai 0 2,
¥ = argmin Syr(0(7),7) = argmin on _1 2D [Byie = Ai(1)0()]

Then, we obtain the estimator of 6y with 6 = 6(%).

3.2 Assumptions and limiting results

The assumptions needed for the panel model and its asymptotic theory are collected below.

Assumptions-panel. For some r > 1,

(3.12)

P1. (a){(vit, zit, zit, pir) : t = 1,2,... } are independently identically distributed (i.i.d.) across index

i; (b) for each 4, {(yit, Tit, zit,pit) : t = 1,2,...} is a strictly stationary, ergodic, and absolutely

regular sequence with mixing coefficients a(m) = O(m %) for some & > r/(r — 1);

P2. (a) Elyu|" < oo, Elzy|" < 0o, E ||2u]|*" < 00; (b)E ||| < 00, and E ||pu||*" < oo, E(pipl,)

11



is non-singular;

P3. infyer det Q(v) > 0, where Q(v) = E[Ax},(v) Az} (v)] and Az}, equals Az () with Ady being
replaced with Avg;

P4. 2;; has a density function f(z) and f(z) < f < oo over its domain for a finite real number f;
P5. For each i, (a) {vi, Fi—1} is a martingale difference sequence with E(vy|F;—1) = 0, where
Fit is the smallest sigma-field generated from {(w;s, 21,is, 22,5541, Wiss Pis+1) : 1 < s <t < T} (b)
E(ua|Fig-1, i, z1,it) = Euit|vi) = Bigvir almost surely; (¢) a; and b; are independent of the error
term wu;; for all ¢;

P6. dg # 0 and # € B € RFt4=1 where B is compact;

P7. v = ar:ggin L*(0%(7),v) is unique, where 0*(y) = E[Az}(v)Azi (7)) E[AzS(v) Ay,
L*(6*(7),7) :/E[S}T(G*(v),'y)], Syr(8,7) equals Sy (0,v) with Aty being replaced with Awvy,
and I" is compact.

In Assumption P1(a), we assume independency across index i. Assumption P1(b) assumes a
[-mixing sequence across index ¢, where the choice of r involves a trade-off between the allowable
degree of serial dependence and the number of finite moments. And the asymptotics are taken in
large N and large T. Note Zhang et al. (2017) only allow N goes to infinity and treat T as fixed.
Assumption P2 contains unconditional moment conditions. Assumption P2(a) is the regularity
moment conditions required and P2(b) and P5(b) ensure that the OLS estimators of the reduced
form models (3.2)-(3.3) exist and converge to the true parameter vector at the root-NT' rate.
Assumption P3 ensures that the parameter estimation is well defined for all v € T'. Assumption
P4 makes sure our x;; has a bounded density function. Assumption P5(a) is the assumption for
a linear endogenous structure, which can be easily extended to a non-linear endogenous structure.
Assumption P5(c) assumes the unobserved individual effect b; and unobserved time fixed effect a;
are independent of the errors u;; for all t, which is a standard assumption in panel data model.
By Assumption P6, we consider a kink regression model. Assumption P7 is an identification

assumption, similar to Assumption 2.1 of Hansen (2017).

Denote ¢ = (6’,7)" and let

Az},
AHy(¢) = —a%[ﬁyu — Azji(7)0] = #() ; (3.13)

—O[I(wy > v) — I(@is—1 > )]

12



and AH; = AH;(¢o).

Theorem 1-panel. Under Assumptions P1-P7, as (N,T) — oo, we have

VNT (&s - ¢0) 4 N(0,V), (3.14)

2

where V = Q71§90 § = E(AHitAH{tAaft)7 Q = E(AHuAH)]), and E(AH,AH)) is a

(k+1+dn) x (k+1+d,1) matrix.

Remark 2: The proof is provided in the appendix. Similar to the time-series model, our slope
and threshold estimators are jointly normally distributed with root-NT' convergence rate and they
have a non-zero asymptotic covariance matrix. To make inference, we estimate the asymptotic

variance covariance matrix by

V=0"18§907!

where @ = xr—y Xy oy AHu($)AH},(9) and 8 = ypi—py Yoty Yoo AHin(9) AH}(9)AZ5(9).
Here Aé;s() = Ayt — By Awst — §(Xis — A7) Lin(7) — ByAzie — By Ady and

~ Al’it
AHi(¢) = *Q[Ayu — Ay (7)0] = ) . (3.15)

o¢ =0 (i > v) — I(zi—1 > )]
4 Monte Carlo simulations

This section contains Monte Carlo simulations to evaluate the finite sample performance of our
proposed estimator. Below, we list the four data generating processes (DGPs)- two give time series
data and two yield panel data.

DGP1:

yr = co + Prozt + do(ze — v0) I (zt > v0) + ur, ur = 0.1et + Koy, (4.1)

re=2+v+py, t=1,...,n. (4.2)
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DGP2:

Yt = co + Broxe + do(xe — v0) (2t > Y0) + B30zt + us,  wp = 0.1e4 + K(v1e + var), (4.3)
=24 (0.9v1; + 0.1v) +p1, 2z = 2+ (0.1vyy + 0.9v2;) + pay, (4.4)
t=1,...,n.
DGP3:
Yit = co + Prozit + 6(it — v0) L (Tt > Y0) + bi +wit, ur = 0.1vit + Koy, (4.5)
Tit = 24+ Vi + pir, e = 0.1vy + kv, t=1,...,N,t=1,..T. (4.6)
DGP4:

Yit = co + BroTit + do(Tie — 70)I(wst > Y0) + B30zit + by + uit, Uit = 0.1vg + k(v1ie +v2ae), (4.7)

2y = 24 (0.9v1 4 + 0.1va4) + p1e 2ie = 2+ (0.1vr s + 0.9v24¢) + pay (4.8)

In the time-series setup, we consider two different data generating processes, DGP1, and DGP2.
In DGP1, we only allow the threshold variable to be endogenous, while in DGP2, we allow both
the threshold variable x; and slope regressor z; to be endogenous. The endogeneity of x; in DGP1
comes from the common factor v; between x; and u;. In DGP2, the endogeneity of (x, z¢) comes
from the common factors vy and vy shared with w;. DGP3 and DGP4 are designed for the panel
KTR context. Specifically, DGP3 allows the threshold variable z; to be endogenous, and DGP4
allows both the threshold variable and regressors to be endogenous. In DGP3, the endogeneity of
2t comes from the common factor v;; between z;; and u;. In DGP4, the endogeneity of (xi, zit)
comes from the common factors vy ;; and v ;; shared with w;. For all data generating processes, we
use £ to control the severity of endogeneity and we set cg = S19 = 0o = P30 = 1, and v = 2.

In DGPI, (vt, pt,et) ~ .i.d.N (0, I3), where p; is our instrumental variable. In DGP2,
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(vit, Vat, P1t, Dot €¢) ~ 1.6.d.N(0,I4) and pi¢ and po are the instrumental variable for x; and z;,
respectively. In DGP3, we generate (v, pit,&it) ~ 1.i.d.N(0,I5), and the unknown fixed effects,
b; ~i.i.d.N(0,1). In DGP4, we have (v1t,v2,t, P1,its P2,it, €it) ~ i.i.d.N(0,1I5) and b; represents
individual fixed effects with distribution N(0,1) across i. With « € {0.05,0.5,0.95,2}, we check
the performance of our estimator under low, moderate, and high endogenous severity. We set the
sample size n = 100, 200, 300, and 400 for GDP1 and DGP2, and N = 10,20,30, and 40 and
T = 10,20,30, and 40 for DGP3 and DGP4. The number of Monte Carlo replications is 5,000.
Tables 2 ,3, 4 and 5 report the root mean squared errors (RMSEs) for our proposed estimator for
DGP1, DGP2, DGP3, and DGP4, respectively. To save space, we only report the panel model

results with severe endogeneity (i.e. k = 2).5
[Table 2; Table 3]

Table 2 and Table 3 display the Monte Carlo simulation results for our DGP1 and DGP2. We
compare the results of our proposed estimator and the least squares estimator ignoring endogeneity
issue under different sample sizes. We have the following observations. First, we find that, as
the number of observations increases, the RMSE without control functions remains large as the
endogenous severity rises(x increases). For example, without using the control function correction
approach, the RMSE for 8; barely decreases, even with a mild degree of endogeneity. By contrast,
with the control function correction, the RMSEs for all parameters decrease rapidly as the sample

size increases, confirming the validity of our CF approach to tackling endogeneity.
[Table 4; Table 5]
Tables 4 and 5 give the Monte Carlo simulation results for DGP3 and DGP4, respectively. With
severe endogeneity, the findings are similar to those in the time-series model.
5 Empirical study

Since the worldwide outbreak in early 2020, global countries have suffered tremendously from the

COVID-19 pandemic. Recently, there has been a growing interest in the literature examining the

>The results for other cases are available from the authors upon request.
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COVID-19 impact on the labor market. For example, Baek et al. (2021) study the impact of
the Stay-at-Home order on the US labor market. They consider the first wave of COVID-19 and
measure the fluctuation of the labor market by State Initial Claims for Unemployment Insurance,
where they find that the Stay-at-Home policy only accounts for a small fraction of the total negative
effect of COVID-19 on the labor market. Using individual-level data, Lee et al. (2021) find that the
negative impact of COVID-19 on the labor market spread unequally across the population. Among
other interesting findings, we observe that the unemployment rates for most advanced economies
have recovered to the pre-COVID level while the pandemic is still ongoing. This unconventional
fact motivates us to investigate the potential nonlinear relationship between the COVID-19 cases
and the labor market performance. We extrapolate the potential nonlinearity ties-up with the
occasional lockdown policy that the government imposed aimed at easing pandemic pressure for
hospitals as cases surge. For that reason, in this section, we study the effect of COVID-19 on the
Canadian and US labor markets by using our proposed endogenous kink threshold panel model. We
collect monthly data for each province/state. Canadian data spans from January 2020 to September
2021, while the US data spans from March 2020 to September 2021. The covered periods are long
enough to capture multiple waves of COVID-19 outbreaks, which provide an overall picture of this

relationship. We propose to use the following KTR model to examine our hypothesis

uney = Po + Biow(casey — o)l (casey < Y0) + Brign(caseq — vo)1(casey > o) + Ae + bs + wi,
casey = Pao + Psotestiy + vit,

(5.1)
where ¢ represents a province for Canadian data and a state for US data, and t refers to the time.
The dependent variable of interest, une;;, is the monthly seasonally adjusted unemployment rate,
and case;; is the log of the number of cases confirmed for COVID-19 in the # month.% Also,
test;; equals the log of the number of tests conducted in the t™® month. And, \; denotes the
time effect, and b; is the individual fixed effect, which capture the idiosyncratic characteristics of
provinces/states. Considering the potential bidirectional causality between une;; and case;, we
thereby apply the CF approach, given in Section 3.1, to estimate model (5.1). In particular, we use

test;; as the instrument variable since this variable is highly associated with the number of cases

SNote that we replace log(0) by 0 to avoid missing data. The same procedure is applied to the tests variable.
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but has no direct effect on the unemployment rate.

For comparison purposes, we also estimate and report the linear panel regression model, which

is in the following form

uney = fo + Blinearcasei + A + bi + ui, (52)

casey = Pao + Paotestiy + vi.

Similar to the KTR model, we also employ a CF method to deal with the endogeneity in the
linear panel model by taking the following steps. We first take the first differencing to remove
the individual fixed effects to estimate the model. Then, we obtain the OLS residuals from the
reduced form equation of case; and include it as an additional regressor in the first-differenced
model to correct for endogeneity. Last, we apply the OLS method to estimate the augmented
first-differenced unemployment rate model. In short, the estimation procedure for model (5.2) is
similar to the estimation strategy introduced in Section 3.1, except it does not require a grid search
over 7.

As mentioned above, this study uses two data sets: one for Canada and one for the US. The
descriptive statistics for all variables are shown in Table 1.7 Note that we take log bases on 10.
The regions covered in our data set are shown in Table 6.

Table 1: Summary Statistics

Canada data(Jan 2020-Sep 2021)
Variable Obs Mean Std. Dev. Min Max

Log cases confirmed case 210 2.5953 1.4732 0 5.0548
Log test performed test 210  4.3490 1.5687 0 6.2470
Unemployment rate (Seasonal adjusted) | une 210 9.2681 2.6692 4.5 17

US data(Mar 2020-Sep 2021)
Variable Obs Mean Std. Dev. Min Max

Log cases confirmed case 988 4.1622 0.7253 0 6.0620
Log test performed test 988 5.3963 0.6660 0 6.9761
Unemployment rate (Seasonal adjusted) | une 988 6.8249 3.2931 2 29.5

"Canada Data source: the number of COVID-19 cases and tests performed from Government of Canada; unemploy-
ment rate is take from Statistics Canada. The US Data source: the number of COVID-19 cases and tests performed
are taken from the Centers for Disease and Control and Prevention America; unemployment rate is taken from the
U.S. Bureau of Labor Statistics.
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Table 7 reports the estimation results for Canadian data. Regressions (1) and (2) report the
results from the linear and KTR models without controlling for endogeneity, respectively. Specifi-
cally, the estimate for Bjpeqr Of the linear model is significantly positive, confirming that the surge
in the (log) number of confirmed COVID-19 cases leads to a higher unemployment rate. However,
the findings of the KTR model suggest that, although the impact of COVID-19 on the unemploy-
ment rate is positive for both regimes, the size is more substantial if the (log) number of confirmed
COVID-19 cases surpasses a certain threshold level (for Canada, this number is 12, 882). The last
two columns of Table 7 report the results when we use a control function approach to correct the
endogeneity, assuming a linear endogenous function. We observe that the coefficient estimate of the
COVID-19 for the linear model with endogenous correction is relatively more prominent than the
ones we obtain without controlling for the endogeneity. Next, for the KTR model with endogeneity,
our estimation results are consistent with the findings in the KTR model without controlling for
the endogeneity, underpinning the positive effect is more significant if the number of confirmed
COVID-19 cases exceeds a certain level. Besides, we observe that the impact magnitude of the
COVID-19 cases on the unemployment rate is also more substantial compared to the ones without
the endogenous correction in both regimes. Interestingly, the size of the coefficient estimate for
the linear regression model is always in-between those of the low and high regime for the KTR
model, regardless of controlling for the endogeneity. To test the nonlinearity, we perform a test for
the existence of a threshold effect. Our null hypothesis of interest is Bjow,0 = Bhigh,0- Employing
the Wald test introduced by Hansen (2017), we conduct the threshold effect test and compute the
asymptotically valid p-value via a multiplier bootstrap. We repeat 10,000 simulations for the boot-
strapping and obtain a p-value equal to 0.0001. Thus, the test strongly rejects the null hypothesis
at 1% significance level, suggesting that the linear model fails to capture the nonlinearity.

Table 8 summarizes the estimation results for the US data. Again, regressions (1) and (2)
report the results for the linear model and the KTR model without controlling for endogeneity,
respectively. In general, we draw similar conclusions as we obtained from examining Canadian data.
The estimated coefficient of the (log) number of confirmed COVID-19 cases on the unemployment
rate for the linear model, Bypear, i positive and significant at 5% level. Turning to the KTR

model, the estimation results show that the impact of COVID-19 on the unemployment rate is
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significantly positive if and only if the number of confirmed COVID-19 cases is above the threshold
level, 16,596. If the number is below this level, the effect turns out to be negative. Regressions
(3) and (4) present the estimation results using the CF approach and assuming a linear form of
endogeneity. We observe that the magnitude of the coefficient estimate for both the linear and the
KTR model is more extensive, and the level of the threshold estimate is lower compared to ones
before correcting the endogeneity. Interestingly, the impact of the low regime switches the sign from
negative to positive after controlling for the endogeneity, despite both impacts are inconsiderable
and close to zero. Our results offer a word of caution to the notion that increasing the number
of confirmed COVID-19 cases unorthodoxly facilitates to clear the labor market if the number of
confirmed COVID-19 cases is not large enough. The main reason for the negative sign in the low
regime of the regression (2) is the result of endogenous distortion. We also implement the threshold
effect test and obtain the bootstrap p-value= 0.0003. Similar to the result with Canadian data, we
strongly reject the null hypothesis of linearity at 1% significant level, favoring the KTR model.

We also apply a t-test to test for the endogeneity of case;; for the KTR model. Compared with
the complexity of threshold variable endogeneity test in TR model, endogeneity test of threshold
variable in the KTR model is quite standard. Testing the endogeneity of threshold variable in
the TR model need to consider the existence of a threshold effect; see,e.g.,Kourtellos et al. (2021).
While, in the KTR model, testing the endogeneity of threshold variable is free of the existence of
the threshold effect, since the threshold variable is also part of regressors which stay in the KTR
model. Via using control function approach, testing for the endogeneity of case is equivalent to
testing B4 = 0, where By is the coefficient of endogeneity bias correction term (Aw;) and Awvg
is the first difference of vy in model (5.1); see,e.g.,equation (3.7) for detailed definition. In our
case, the t statistic in the absolute value for Canada is 19.76, for the US is 13.27. As both test
statistics are higher than the 1% critical value, tg 1 = 2.617, we strongly reject the null-hypothesis
of non-endogneity even at 1% level, which supports the existence of endogeneity.

Finally, as was mentioned earlier, when we estimate the KTR model, following Hansen (2017),
we use a grid search method to go through the parameter space of the threshold value and obtain
the global minimum least square estimator, using an interval of length 0.1. Figure 1 plots the

least-square criterion Sy, (y) as a function of 7. Both for the Canadian and the US plots we find our
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criteria functions are reasonably smooth and have a well-defined global minimum, which suggests

the interval we choose for grid search is sufficiently enough.
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Figure 1: Least Square Criteria

6 Conclusion

As in Hansen (2017), we consider a kink threshold model, extending the model to allow for en-
dogeneity, following Kourtellos et al. (2016) and Yu et al. (2020) and applying a control function
approach to tackle the problem. Monte Carlo simulations show that the small sample performance
of our proposed estimator is quite satisfactory both for time series and panel cases. Last, we apply
our model to examine the effect of COVID-19 cases on unemployment rate in Canada and the US.
We find COVID-19 cases above certain thresholds both for Canada and the US have had significant
negative effects on labor market activity, while below that threshold the effect overall was found to
be moderate.

Our method has several possible extensions. Instead of introducing bias correction terms linearly
(Bove in (2.5)), one can introduce a nonparametric endogeneity correction term(g(v¢), where g(-)
is an unknown function), like Kourtellos et al. (2021) in threshold regression model. Also, one
may want to relax the linear specification in reduced-form functions (2.2)-(2.3) to a more flexible

semi-/nonparametric specification.
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7 Appendix

7.1 Proof of Theorem 1-time series

We first show that sup e gy [Sn (@) — S5 ()] 2 0, which implies that minimizing S, (¢) with respect
to ¢ is equivalent to minimizing S} (¢), where S, (¢) and S;;(¢) are defined in (2.6) and Assumption
T7, respectively. Then, closely following the mathematical proof of Hansen (2017), we can show
that the optimization problem of S (¢$) with respect to ¢ satisfies all the required conditions in
Section 3.2 of Andrews (1994), which completes the proof of this theorem. Hence, below, we only
need to prove supye g [Sn(@) — S ()] 2.

Now, we denote Py = X (7)[X'(7)X (7)] ' X'(7) and P} = X*(7)[X*(7)X*(7)] "' X*'(7), where
X*(7y) is defined in the same form as X () by replacing x:(7) with 2} (7). For any ¢ € B x T, we
have

5u(6) = 23" - a0 = 2y (1~ P )

t=1
Let X — o7, and I,,(70)(X —07») be the matrix form of z; — o and (¢ —70)I(x+ > 7o) respectively,
where 7, is an n x 1 vector of ones, I,(vo) = diag {I(xz1 > Y0), -+ ,I(zn > 70)}. Also, let e stack
up &;, v stack up v;, and o stack up 0; for i« = 1,...,n. Below, we decompose S, (¢). By simple

calculation, we have
y=X"(10)b0 +& = X(7)b0 + [X*(7) = X(7)] 6o + [X"(70) — X*(7)] b0 + ¢,
where we have

X*('Y)_X("/) = [On><170n><170n><€7v_7}]7

X*(’YO) - X*(f)/) = [('Y - 'YO)Tm In(’YO)(X - 'YOTn) — In('Y)(X - ’YTn)v Onxe, 0n><(1+dz1)] .

Note that X'(v)(In — Py) = O(j4d,1)xn and & = (v —10)840 +¢, where & stacks up €; fori = 1,...,n.
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Thus, we can show

$2(8) = = {raly = 0)B10 + [nr0) (X ~207) ~ () (X =37} + 2 (I — ) x
{mn(v = 70)B10 + In(10)(X = 07n) = In(V)(X = y70)]00 + £}
= L= P+ 2aalla )y —0) + d0,7) (X — 207)] (T = P2
2Bl — 70) + 0,7 (X 2072

X (In = Py)[In(7) (v — 70) + d(70,7)(X = v07)],

(7.2)
where d(70,7) = In(y0) — In(7)-
Next, we decompose S} (¢). By simple calculation, we have
y=X"(70)00 +& = X"(7)00 + [X"(70) = X"(7)]00 +&.
As X*(7)(In — PJ) = O(1d,,)xn> We obtain
Sp(e) = %{Tn(’Y —70)B10 + In(70) (X = Y070) = In(7)(X = v7)1d0 + €} (In — ) x
{Tn(’y - '70)/310 + [[n('YO)(X - 'YOTn) - In('Y)(X - 'YTn)]éo + 5}
= S P)e + 2oLy — 0) + a0, )X — o)}~ PY)e
By = 70) + 30, 7)(X = 307} (= P)
X[L(v) (v = 70) + d(30, V) (X = 070)].
(7.3)
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Subtracting (7.3) from (7.2), we have

= —(Fe-ce)+ %50 [In (V)7 (v = 70) + d(70, (X = 707)]'(€ = €)
—%58 [Ln (V)70 (v = 70) + d(70, ) (X = v070)] (Py = P3)[In (V)70 (v = 70) + d(70, 7)(X —v070)]
o (EPyE = £ PiE) 217y = 0) + 0, (X =0 (Pye = Po2)}

= 51+ 255 — S31 — S50 + 2533

Below, we show that Sy, S2, S31, S32, and Sz are all 0,(1) uniformly over the domain of ¢.
S1: Denoting 7t = [#, 7], mo = [7g, 7o) and py = [Py, Ply)', We have & — mg = Op(n~'/2) under

Assumptions T2(b) and T5(b) and

S = —(Fe-¢e)

I3~

= Zfio0 — e + oo — (0 — D)o

= Op(n™' %)+ Op(n™") = 0p(1), (7.4)
since n1le’e = 02 + 0,(1) under Assumption T5 and

n n
lo—8)* = (& — m0) > peor(ft — m0) < nllF — mo|*Amac(n ™ Y pre}) = Op(1) (7.5
=1 t=1

under Assumption T2(b), where Apqz(A) denotes the largest eigenvalue of a symmetric matrix A.
Sa: By Assumptions T2 (a), T7 and applying L || —[| = 2 ||(v — 9)Ba0]| < 2 ||Baol [l — 8| =

Op(n~1), for all v € T, we can show

S = 100y = 0)ThLa(2) =€) + - 6o(X ~ 207 d20,7)E &) = Op(n™2) + Op(n™2) = (1),
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Ss1, S32, S33: By showing S31, 532, 533 are all o,(1) for any ¢ € B x I, we only need to prove:

rgggi% [[Zn(3)7a(y = 70) + d(30, (X = 70m)]' [X (7) = X* (W] = 0p(1), (7.6)

rnaxl ||é’X('y) - E'X*('y)H = op(1),

yel' n

ma - [ X' (X (y) = X ()X*()|| = 0p(D).

yel' n

First, applying (7.5), we have

1 1
— X () = X* ()| = =
ryggnll () =1

-] = Op(”il) =op(1).

Next, by Assumptions T2(a) and T7, we have

mace L | [La()7a = 30) + d(30,9)(X = 507 [X(2) — X ()]
yel' n

< a1 (3)72 3y = 70) + 030, 2) (X = 307 [1X(2) = X* ()] = Opf™/2) = 0y(1),

which verifies (7.6).

Next, we show (7.7). Applying triangle inequality gives

where L [€/(6 )| = O,(n=/2) by (7.4), and maxer 1]|(v — 0y X ()] < Lflv—

1 al !y *
max —[[€X(7) - ' X (7)]|
1 N 1 .
< max [|€"X (7) = X* (]| + max [[Bio(v — ) X ()|

1

. 1 N
o €@ = v 4+ mas = | Bl (v - 0)' X ()|

= Op(”_l/Z) + Op(”_1/2) =0y(1),

Op(n~"/2) by (7.5) and under Assumption T2.
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(7.11)

XN =



Finally, by Assumption P2 and (7.9), we can show

max — || X'(1) X (7) - X*(1)X*()|

yel' n

2 X 2 . 2, 1y,
=max (X =~7)' (0 = v)|| + max [ (NX = 7))/ (0 = )| + = [|(2 = )| + — |50 = "o
=0,(n"Y?) + 0,(n"V?) + 0,(n"Y?) + % o0’ — o', (7.12)

where 2 is an n x £ matrix, and z = [21, 2, ..., zn)'. Then, we only left to show 1 |50 — v'v|| = 0,(1).

Note that,

l ~l _ ! . l N (A _ z 5o !
Yool = Lo e -ol+ 26—l
= Op(n N+ A4, (7.13)
where, under Assumption T2, for any bounded v, we have
1. 1,,. B
A =~ =)o) <@ =0)lvl]l = Op(n~"?). (7.14)

Thus, combining (7.12),(7.13) with (7.14), we obtain

L X/ )X(0) - XX (0] = o).

To sum up, we have sup |S,(¢) — Sk (9)| 2,0, which completes the proof of Theorem 1-time
peBXT

series. W

7.2 Proof of Theorem 1-panel

Similar to the proof of Theorem 1-Time Series, we first prove supgepyr [SnT(6) — Sy ()] 20,
which implies that the minimizer of Sy7(¢) is also the minimizer of S}, (¢), where ¢ = (6',~)’, and
the definition of Syr(¢) and S, (#) are given by (3.8) and Assumption P7, respectively. Then,
by showing that, for ¢ € B x I, the optimization problem of S%.(¢) satisfies all the four required

conditions in Section 3.2 of Andrews (1994), we verify Theorem 1-panel.

We first show that supyepyr [SnT(9) — Sy ()] 2.
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Define P(y) = Az(y)[Az(y) Az(y)] "' Az(y)" and P*(y) is in the same form of P(7y) with Az(y)
being replaced by Az*(y), where Az(y) = [Az12(Y), ..., Az17(7Y), ooy AZ N2, ..., Azy7(7)] is an
[N(T — 1)] x (k4 d;1) matrix, and Az*(y) equals Az(y) with Az (y) being replaced by Az}, ().

Then, for any ¢ € B x T', Sy7(¢) can be expressed as

N T

1
Snr () ) ZE; (Ayir — Azip(7)'0)* = mAy,P(W)A%
z:l t=

where Ay = [Ay12, ..., AT, .y Ayne, ..., Aynr]' is an [N(T — 1)] x 1 vector. Note that, we can

rewrite Ay as
Ay = Az*(10)00 + Ae = [Az™(y0) — Az(7)]6o + Az(7)bh + Ae,

where Ae = [Ae1g, ..., Ae1T, ..., AEN2, ..., Aenr]) an [N(T — 1)] x 1 vector.

As Az(y)'[Int — P(7)] = 0(11d,1)x N(T-1), We have

Sxr(0) = sy 1A (o) = Ao+ AcY [Ty = P(o)]

x{[Az*(70) — Az(7)]0 + Ac}.

where In7 is an identity matrix with dimension N (7 — 1).

Similarly, we can also decompose Ay as
Ay = A" (30 + Ac = [Az*(10) — Az*(7)] 6 + Aa* (7)o + Ae.

Since Az (y)[Int — P*(7)] = Oky.d,,)x N(T—1)> We have
1 ! *
Syr(d) = NT-1) {[Az"(v0) — Az*(7)]00 + Ac} [InT — P*(7)]

X {[Az"(70) — Az*(7)]00 + Ac} .
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Therefore, we obtain

Snr(#) — Syr(9)

= p 189" () = Aa)bo) [Ty — POA (1) - Ar (o}
gy (A o) = A" ()l + AV [P () ~ POH[A" (0) = A" (1) + Ae)
vy (A7 0) = Aalfo) v — POIHIAS' () — A ()]0 + &)

= &1+ 8+ 283,

where denoting Aw = [Awly, ..., AW]p, ..., A, ..., Awh ) for w = v and ¢ and x(v) = [(X12—

1) Tia(y)s - - oy (Xar — y2) Tir (), -+, Xva — 472) Ina (Y), - -, (XN — y72) InT ()], We have

Az*(y) — Az(y) = [On(T-1)x1> ON(T-1)x 15 ON(T—1)x 1, AV — A,
Az*(v0) — Az™(y) = [On(r-1)x1: X(70) = X(7), ON(T=1)x 15 ON(T=1)x (14d21))-
Hence, we obtain
1 N N
S = N(Ti_l)ﬂfxo(AU — Ab)' (Inr — P(7))(Av — AD) a0
1 N
))\maac (INT — P(V))B&O(AU — A@)I(AU — A’l})ﬂ40

SNT -1
— O,(N(T - 1)) (715)

since In7 — P(7) is an idempotent matrix with Ayez(InT — P(7)) = 1 and denoting = [H/ I LV,
My = [T, T)', and Py = [pl, 44, D), ;4]', We have I — Iy = O,([N(T — 1)]7'/2) under Assumptions

P2(b) and P5(b) and

N T
|Av = Ad|* = (IT—1Io)" > > APy AP}, (IT - )
i=1 t=2
< N(Tl)HﬂHH2)\mm< 1)ZZAP¢A >
=1 t=2
= 0,(1) (7.16)

under Assumption P2(b).
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Next, we consider

2
S = %[x(%) = XMI'TP*(v) = P]Ix(0) = x(0)] + ﬁ&'[p*m — P(+))Ac
+%[x(%) —x(MV'[P*(7) — P(v))Ae,
= So1 + Sag + 2593 (7.17)

where Ae = [Ae1a, ..., Ae1r, ..., Aena, ..., Aenr]’. First, we establish Sa;. Under Assumption P2(a),

we have A ||x(70) — X(’Y)H2 = Op(1). Then, by Lemma-1 and Assumption P2, we have

NT-D)
5: _LH( ) = Xx(MI'P*(9) = PMIx(h0) = x(]]|
21 _N(Tfl) X\70) — X\ Y PIX0) = XY,
68 2 *
<—9 ¢ _ —
< g 100 =X, 1P () = PO,
= 0,(1) (7.18)
where [ Al|, is the spectral norm of a square matrix A and [|A||;, = },{21(14’14). Then by Lemma-1

and closely following the proof of (7.18), we can show that Sz and Sa3 are also 0p(1).

Last, by simple calculation, we can express S3 as

S = s (A= A0) vy — PO)X(0) ~ x() + A
2P0 (ny by [x(10) — x(1) + Al — 2% (Ay — AGY P(y)[x(r0) — x(7) + A
NTT 1) x(0) = x(v N~ 1) 7)Ix(0) — x(v
= Sz — 2S5 (7.19)

where S31 = 0,(1) under Assumption P2 and

S = (Ao = Ad) P()l(0) — x(1) + Ad
< 2Biod max m(ﬁv — Ad) Az(y) X [ﬁm(v)/m(v)}’l
X max mﬁx(v)/[x(%) —x(7) + Ae]
= 0p(1)0p(1)0p(1) (7.20)

by (7.27) in Lemma-1 and Assumption P2.
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To sum up, we have supyepxr [SnT(9) — Syr(d)] 2.

Next, we show that the four conditions required by Section 4.3 Andrews (1994) also hold in
our case. Denote m Zf\;l ZtT:Q M;:(¢) as the first order partial derivative of Sy, (¢) and the
minimizer of S} (¢) is given by solving m Zfi 1 23;2 M;(¢) = 0. By definition, My(¢) =
AH;(0)Aei(9), and Aei(¢p) = Ay — Azf/(v)0. Under Assumption P7, the true threshold value
~o is the unique minimizer of L*(6*(v),7). And, by Assumption P3, 6*(vy) is uniquely defined
for all v € I, where I'' is a compact set. Combining Assumptions T3 and T7, we have the true
parameter ¢p minimizes L*(¢) = L*(6,) and is the unique solution of M (¢o) = E[M;(do)] = 0,
where L*(¢) = E[Syp(#)]. Following we establish the four conditions one by one.

Condition 1: ¢ 5 ¢.

For the kink regression model, Az7,(v) is continuous in v and we have Aey(¢) = Ay — Az (v)6.
Therefore, Acy(¢) and Aey(¢)? are continuous in ¢. Using the Cauchy-Schwarz inequality, we
have,

Ach () < 205 + 20af{(1)0] < 2897 + 267 || A (7)]?, (7.21)

where § = sup{||0|| : § € B} and is bounded under Assumption P6. Recall the definition of Az, (7),
under Assumptions P2 and P7, we have the finite bound || Az}, (7) I? < Az +2(mi—7) 2+ Azl Azy+
Av},Avi. Thus, for ¢ € B x I', E[Ac%(¢)] = O(1). Applying Lemma 2.4 of Newey and Mcfadden
(1994), we can show supyepur |95 (9) — L*()] 20 as NT — oo, where L*(¢) = E[S%(6)].

Finally, by Assumptions P3, P6, and P7, B x I' is compact and ¢q is the unique minimizer
of L*(¢). Thus, we conclude the proof of Condition 1 by applying Theorem 2.1 of Newey and
Mcfadden (1994).

Condition 2: SN ST AH Ay S N(0,S).

1
VN(T—-1)
Following Herrndorf (1984), we complete the proof for Condition 2 by applying the CLT for the

strong mixing process under Assumptions P1 and P2.
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Condition 3: Q(¢) is continuous in ¢ for ¢ € B x I" and Q(¢) = Q, where

Q6) = -5 BIAM0)Aew] = EIAH(6)A(0)]
0 0 00 0
0 0 0 0 Acy(d)(we >7) — I(@it—1 = 7)]
+E£ (o0 0 0 0 0
0 0 0 0 0
0 Acy(d)(we>7)—I(za-127)] 0 0 0

Obviously, Q(¢) is continuous w.r.t. 8. For 7, note that the parameter v enters Q(¢) through
one of the following forms: Wi;—p, I(®it—p, > 7), Tig—p L(xiy > V)I(xis—1 > 7y), or I(xiy >
NI(zit—1 > ), where D; € {0,1}, j = 1,2 and Wi p, can be any vector whose elements
are pairwise products of (1, Yit, Yit—1, Tits Tit—1, Zit, Zit—1, Vit, Vig—1). By Assumptions P2, P4 and
applying the law of iterated expectation, we can show that Q(¢) is also continuous w.r.t 7. By
definition, the second term of Q(¢) equals zero when we evaluate it at ¢ = ¢o, which implies
9(¢o) = Q. Hence, we conclude our proof for Condition 3.

Condition 4: gnr(¢) M (p) — M(9)) is stochastic equicontinuous,

N T
= \/ﬁ Dim1 2oi=al
where Mi(¢) = AHi(¢)Acit(¢) and M(¢) = E[Mi(9)).
Note that 0 enters M;;(¢) with linear or quadratic forms. Therefore, we only need to establish

the stochastic equicontinuity w.r.t. . Hence, without loss of generality, we temporarily ignore 6

and focus on v in M;:(¢) and write M;:(¢p) as M;(y). Then, we have

Miy(v) = AHyu(y)Asi(y)

= [Az; (V) (Ayie — Az (7)0), 01 (i > ) — I(wir—1 > 7)(Dyae — Az (7)0)]- (7.22)

Note that the parameter v enters M;(y) through one of the following forms: W;;—p, I(z;+—p, >
)5 Tig—py L(wiy > y)I(zi0—1 > ), or I(zse > v)I(xi—1 > ), where where D; € {0,1}, j = 1,2,
which defined in Condition 3. Then we construct a bound which helps establishing Condition 4.

We denote F(.) as the cumulative distribution of x;;. Then, for any v > 71 and v1,v2 € T, by

Assumption P4 and employing Taylor expansion, we have F(y2) — F(v1) < f|y2 — v|- Thus, the
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bound equation for Wi p, I(xit—p, > ), Zit—p, I (xig > v)I(xi—1 > ) and I(z;p > v)I(2i—1 >

) are given as follows by applying the Holder’s inequality:

EWis-p (1 < wip < y2)I (71 < @i0-1 < 2)]?
< E(|Wig—p, )" (E|I(71 < i < 3))Y " (EI(71 < @341 < 72))Y®
< C(F(y2) = F(y)) M/ artt/e)

< Cf(l/q1+1/q2)‘,y2 _f}/1|(1/(11+1/<12)7 (7.23)

where & + L +1 =1 and E(|W;—p, ™) <C.

Following we establishing Condition 4 by applying Doukhan et al. (1995) Theorem 1. In our
case, with martingale differences sequences, their condition (2.15) holds. Let 7% be an equally
spaced grid search point on T', where k = 1,...,N. Then, for any v € T, there exist a bracket
such that min[M;:(ve—1), Mit (k)] < Mit(y) < max[Mi(vk—1), Mit(vx]. Denote p as any positive
number and N () = p~2/9. By the bound equation (7.23), we have E || Mit(1) — Mit(y_1)||* <
CfY ey, — 1|9 < OWN (1) ~9) = O(u?), where O(N ()~ 1) is the distance between grid points
and % = qil—i-q%. Thus, we have N (1) are the L? bracketing numbers and Ha(p) = In N () = |log y
is the metric entropy for the class {m;(v)|y € I'}. Combining this with Assumption P1 , we can
apply Theorem 1 of Doukhan et al. (1995)% to establish the stochastic equicontinuity of gn7 w.r.t
v, which finish the proof of condition 4.

As Conditions 1-4 are proved above, it is sufficient for us to establish Theorem 1-panel.l.

Lemma 1 Under Assumptions P2, P3, P5(b) and P7, we have maxyer [|[P*(7) — P(7)5, = 0p(1).

8Note that, by collecting the bounded condition we show above and the Assumption P1, condition (2.15) in Doukhan
et al. (1995) is satisfied. Thus, Theorem 1 of Doukhan et al. (1995) holds here.
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Proof. By triangular inequality and simple calculations, we have

IN

max 1P(v) = P ()l

max [|Az(m)[Ae(y) Az(y)] ™ Ax(y) - Ac”()[Ac" (v) Aa” ()] Aa" ()|
max || Ax(y) {[Aa(y) Aa(y)] ™ = [Aa* () Aa’ (1))} Ax ],

+max [[[Az(y) - Az (N)[Az* (y) Ax* ()] [Ax(y) — Ax" ()],

+2max|[[Ax(y) — Ax*(y)][Az* () Az* ()] A ()
yer

sp

sp

Spl + SPQ + 28p3 = Op(l). (7.24)

First, we verify that Spp and Sp3 are 0p(1). Under Assumptions P2, P3 and P7, by equation (7.16),

we have

and

Sp2

= max|[[Az(y) = A" ()][A" (7) A’ ()] [Aw(y) = A2t ()],

< . max || Az(y) — Az*(7)|| réléix Az (y) Az (7))

N(T — 1) 5er r
x max [|[Az(y) — Az*(v)]]
yel

1
T

sp

Az () A* ()]

1 , 1
= — — _Av— A __
N7 18y~ Al TQFH[N(Tfl) .

= Op(IN(T = 1) )0,(1) = 0,(1), (7.25)

sp

= max [[Az(7) = Az*()][Aa* () Aa* (7)) Az ()|

< ||A% — Av||max
yel

1 * ! ok — 1 kK
[mAl‘ () Az*(v)] IHSPII/?B(W—U”AE Gl

= 0p(1)0p(1)0p(1) = 0p(1), (7.26)

where we have
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H [ﬁAI*(V),Af‘(W}]fl

sp

_ 1
= /\m},'n [m

Aok (BlAT (A0 + 0, (| gy e /e ) - Eldai ()i

e oA e Ax (7Y Aa* ()]

sp

= 0,(1). (7.27)

by Assumption P3 and applying Weyl’s theorem in Seber (2008). Apin(A) denotes the smallest

eigenvalue of a symmetric matrix A. Next, we show Sp1 is 0p(1). Under Assumption P2, we have

Sp1

= max[[Ar() {[Aa(r) Ar()] ! — A0’ () Aa* (0]} AaY ],

< i gy A0 NT = 1) mae [ Aa()] ! = [ () A" ()],

= Op(1)op(1) (7.28)

where by (7.27) and closely following the proof of Theorem 1-time series (7.12), (7.13) and (7.14),

we obtain

Given Sy, Sp2 and Sp3 are both o0p(1), we have max,cr ||[P*(y) — P(7)||

N(T = 1) ma||[Aw () da()] 7! = [Aa* () Az ()],

N(T —1) max [1Az(y) Ax(y)] " {[Az(7) Az(y)] = [Aa” () Aa* (NHAZ* () Az* (D],

mag vy A Ao s sy v - (8 Y )|
i |y a1
0,y (110y(1) = 0,(1) (7.29)

o= op(1) M
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Table 2: Estimation Results for DGP1

MEAN-3 RMSE-f MEAN-6 RMSE-6 MEAN-y RMSE-y

(Bro=1) (do = 1) (0 =2)
k=0.05 No CF
T=100 1.0248 0.0313 1.0006 0.0261 2.0005 0.0405
T=200 1.025 0.0279 1 0.018 2.0001 0.0232
T=300 1.025 0.0267 0.9999 0.0145 1.9998 0.0137
T=400 1.0252 0.0263 0.9997 0.0123 2.0001 0.0071
k=0.06 CF
T=100 0.9965 0.0252 1.0004 0.0248 1.9999 0.0382
T=200 0.9984 0.0158 1 0.017 1.9998 0.0202
T=300 0.9989 0.0121 0.9999 0.0137 1.9998 0.0115
T=400 0.9994 0.0101 0.9997 0.0116 2.0001 0.0057
k=05 NoCF
T=100 1.2449 0.2541 1.0103 0.0907 1.9999 0.1477
T=200 1.2488 0.2531 1.0036 0.0631 2.002 0.0993
T=300 1.2482 0.2511 1.0022 0.051 1.997 0.0818
T=400 1.2494 0.2515 1.0008 0.0432 1.9998 0.0717
k=05 CF
T=100 0.9685 0.1564 1.0004 0.0248 1.9999 0.0382
T=200 0.9851 0.0923 1 0.017 1.9998 0.0202
T=300 0.9891 0.0715 0.9999 0.0137 1.9998 0.0115
T=400 0.993 0.0618 0.9997 0.0116 2.0001 0.0057
£=0.95 NoCF
T=100 1.4534 0.4738 1.0404 0.175 1.9938 0.3185
T=200 1.4686 0.4771 1.0149 0.1176 2.0038 0.2023
T=300 1.469 0.4746 1.0092 0.0947 1.9943 0.1599
T=400 1.4722 0.4759 1.0052 0.08 1.9998 0.1342
k=095 CF
T=100 0.9406 0.2959 1.0004 0.0248 1.9999 0.0382
T=200 0.9717 0.174 1 0.017 1.9998 0.0202
T=300 0.9793 0.1349 0.9999 0.0137 1.9998 0.0115
T=400 0.9866 0.1166 0.9997 0.0116 2.0001 0.0057
K=2 No CF
T=100 1.9103 0.9654 1.1788 0.4275 1.9975 0.6629
T=200 1.9581 0.9822 1.0872 0.2698 2.0054 0.4974
T=300 1.9689 0.9845 1.0567 0.2098 1.9906 0.4067
T=400 1.9808 0.9907 1.0362 0.1732 1.9972 0.3354
k=2 CF
T=100 0.8754 0.6224 1.0004 0.0248 1.9999 0.0382
T=200 0.9406 0.3655 1 0.017 1.9998 0.0202
T=300 0.9565 0.2835 0.9999 0.0137 1.9998 0.0115
T=400 0.9716 0.2449 0.9997 0.0116 2.0001 0.0057

Note: CF=Control function approach
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Table 3: Estimation Results for DGP2

MEAN-3; RMSE-3, MEAN-§ RMSE-§ MEAN-3; RMSE-3; MEAN-y RMSE-y

(Bo=1) (do=1) (Bz0=1) (0 =2)

k£ =0.05 NO CF

n=100 1.0249 0.0330 1.0002 0.0288 1.0249 0.0263 2 0.0448
n=200 1.0249 0.0287 0.9994 0.0202 1.0250 0.0257 1.9994 0.0266
n=300 1.0247 0.0269 1.0004 0.0160 1.0250 0.0255 1.9999 0.0163
n=400 1.0248 0.0263 1.0001 0.0138 1.0250 0.0253 1.9998 0.0101
k=0.060 CF

n=100 0.9970 0.0268 1.0004 0.0261 0.9973 0.0240 2.0003 0.0402
n=200 0.9986 0.0159 0.9995 0.0181 0.9989 0.0113 1.9998 0.0200
n=300 0.9989 0.0120 1.0002 0.0144 0.9992 0.0091 1.9998 0.0107
n=400 0.9990 0.0102 1.0001 0.01239 0.9991 0.0078 1.9999 0.0054
k=05 NO CF

n=100 1.2416 0.2639 1.0196 0.1362 1.2495 0.2526 2.0015 0.2336
n=200 1.2459 0.2556 1.0058 0.0920 1.2498 0.2513 1.9984 0.1487
n=300 1.2471 0.2531  1.0081  0.0745 1.2501 0.2511 2.0019  0.1169
n=400 1.2483 0.2527 1.0034 0.0634 1.2496 0.2503 2.0001 0.0995
k=05 CF

n=100 0.9707 0.1554 1.0004 0.0261 0.9729 0.1832 2.0003 0.0402
n=200 0.9857 0.0018  0.9995  0.0181 0.9879 0.0859 1.9998  0.0200
n=300 0.9908 0.0697  1.0002  0.0144 0.9911 0.0705 1.9998  0.0107
n=400 0.9923 0.0591 1.0001 0.0123 0.9906 0.06 1.9999 0.0054
k=095 NO CF

n=100 1.4327 0.4870 1.0910 0.2836 1.4741 0.4798 2.0030 0.4857
n=200 1.4554 0.4778 1.0353 0.1789 1.4747 0.4774 1.9984 0.3251
n=300 1.4639 0.4766 1.0286 0.1427 1.4752 0.4770 2.0059 0.2472
n=400 1.4667 0.4758 1.0154 0.1201 1.4741 0.4755 1.9974 0.2036
k=095 CF

n=100 0.9445 0.2926 1.0004 0.0261 0.9484 0.3451 2.0003 0.0402
n=200 0.9727 0.1732 0.9995 0.0181 0.9769 0.1630 1.9998 0.0200
n=300 0.9827 0.1315 1.0002 0.0144 0.9831 0.1338 1.9998 0.0107
n=400 0.9855 0.1116 1.0001 0.0123 0.9822 0.1137 1.9999 0.0054
k=2 NO CF

n=100 1.8730 1.0006 1.2777 0.7323 1.9984 1.0101 2.0203 0.7903
n=200 1.9085 0.9673 1.1748 0.4336 1.9996 1.0051 1.9936 0.6681
n=300 1.9393 0.9748 1.1374 0.3429 2.0004 1.0041 2.0124 0.5622
n=400 1.9538 0.9791 1.0908 0.2753 1.9982 1.0011 1.9952 0.4914
K= CF

n=100 0.8834 0.6139 1.0004 0.0261 0.8914 0.7232 2.0003 0.0402
n=200 0.9425 0.3640  0.9995  0.0181 0.9513 0.3430 1.9998  0.0200
n=300 0.9638 0.2762 1.0002 0.0144 0.9644 0.2816 1.9998 0.0107
n=400 0.9698 0.2344 1.0001 0.0123 0.9626 0.2393 1.9999 0.0054

Note: CF=Control function approach
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Table 4: Estimation Results for DGP3

MEAN-5;  RMSE-; MEAN-6 RMSE-§ MEAN-y RMSE-y
(Bio=1) (bo=1) (v =2)
No CF FD
T=10 N=10 1.8529 0.9965 1.2912 0.745 1.9985 0.8329
N=20 1.9137 0.9692 1.1745 0.4255 2.0045 0.6624
N=30 1.9394 0.9739 1.1244 0.3292 2.0066 0.581
N=40 1.9539 0.9782 1.0926 0.2705 1.9993 0.5053
T=20 N=10 1.9239 0.9703 1.1484 0.3751 1.9947 0.6415
N=20 1.9605 0.9805 1.0748 0.2448 1.9887 0.4519
N=30 1.9755 0.9877 1.0454 0.1905 1.9955 0.3698
N=40 1.9823 0.9905 1.0309 0.1603 1.9964 0.2961
T=30 N=10 1.9444 0.9726 1.106 0.2879 1.9888 0.5154
N=20 1.9749 0.9864 1.0465 0.1847 1.9979 0.3527
N=30 1.9886 0.9955 1.0223 0.1474 2.0013 0.2737
N=40 1.9908 0.9955 1.0171 0.1247 1.9979 0.2278
T=40 N=10 1.9653 0.9839 1.071 0.2336 2 0.4497
N=20 1.9838 0.9912 1.0302 0.1547 1.9947 0.2851
N=30 1.9907 0.9954 1.0202 0.1246 2.0033 0.2235
N=40 1.9947 0.998 1.0125 0.1069 2.0031 0.1856
CF FD
T=10 N=10 0.8509 0.7733 1.01 0.063 2.0062 0.0974
N=20 0.9404 0.4249 1.0049 0.0312 2.0023 0.0505
N=30 0.9582 0.334 1.0025 0.0234 2.0009 0.0348
N=40 0.9687 0.2777 1.0014 0.0191 2.0003 0.0256
T=20 N=10 0.9444 0.3906 1.0015 0.0249 2 0.0385
N=20 0.9725 0.2574 1.0008 0.0163 2.0005 0.0182
N=30 0.9795 0.2022 1.0005 0.0131 1.9999 0.008
N=40 0.9863 0.1739 1.0001 0.011 2 0.004
T=30 N=10 0.9643 0.2902 1.0006 0.0182 2 0.0237
N=20 0.9804 0.2009 1.0002 0.0125 2 0.0075
N=30 0.9893 0.16 1.0002 0.0102 2 0.0014
N=40 0.9917 0.1375 1.0001 0.0089 2 0.0014
T=40 N=10 0.9728 0.2459 1.0005 0.015 2 0.0148
N=20 0.9853 0.1679 1.0001 0.0107 2 0.0035
N=30 0.9908 0.1372 1.0001 0.0086 2 0
N=40 0.9948 0.1178 1.0001 0.0075 2 0

FD=first difference; CF=control function approach;
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Table 5: Estimation Results for DGP4

MEAN-5; RMSE-5; MEAN-§ RMSE-§ MEAN-33 RMSE-53 MEAN-y RMSE-y

(Bro=1) (0o =1) (B30 =1) (v0=2)
NO CF FD
T=10 N=10 1.8287 1.0494 1.3452 0.9967 1.9996 1.0183 1.9938 0.8768
N=20 1.8725 0.9687 1.2520 0.5777 2.0000 1.0087 1.9983 0.7566
N=30 1.9114 0.9685 1.1816 0.4439 1.9990 1.0046 2.0093 0.6678
N=40 1.9318 0.9730 1.1447 0.3591 1.9981 1.0024 2.0105 0.5908
T=20 N=10 1.8755 0.9707 1.2434 0.5786 2.0034 1.0120 2.0005 0.7403
N=20 1.9306 0.9725 1.1493 0.3599 2.0015 1.0059 2.0092 0.5913
N=30 1.9548 0.9816 1.0875 0.2802 1.9993 1.0021 1.9951 0.4993
N=40 1.9669 0.9849 1.0660 0.2283 1.9995 1.0016 2.0002 0.4272
T=30 N=10 1.9063 0.9632 1.1925 0.4410 2.0009 1.0067 2.0047 0.6625
N=20 1.9523 0.9783 1.0962 0.2774 2.0004 1.0031 2.0019 0.4969
N=30 1.9689 0.9853 1.0617 0.2162 2.0005 1.0024 2.0001 0.4056
N=40 1.9807 0.9920 1.0433 0.1855 1.9989 1.0003 2.0035 0.3388
T=40 N=10 1.9331 0.9728 1.1368 0.3575 2.0001 1.0043 2.0001 0.5849
N=20 1.9576 0.9769 1.0763 0.2355 1.9988 1.0009 1.9884 0.4281
N=30 1.9785 0.9897 1.0421 0.1823 2.0000 1.0014 2.0000 0.3414
N=40 1.9860 0.9937 1.0282 0.1561 2.0001 1.0011 1.9976 0.2817
CF FD
T=10 N=10 0.9686 0.2487 1.0088 0.0889 0.9715 0.2412 2.0014 0.1411
N=20 0.9851 0.1701 1.0027 0.0587 0.9908 0.1613 1.9978 0.0935
N=30 0.9869 0.1375 1.0016 0.0498 0.9902 0.1316 1.9995 0.0759
N=40 0.9948 0.1168 1.0022 0.0423 0.9930 0.1113 1.9998 0.0654
T=20 N=10 0.9870 0.1659 1.0017 0.0449 0.9875 0.1640 1.9997 0.0711
N=20 0.9939 0.1161 1.0019 0.0320 0.9950 0.1139 2.0012 0.0501
N=30 0.9974 0.0922 1.0001 0.0258 0.9976 0.0919 2.0004 0.0401
N=40 0.9992 0.0803 1.0004 0.0219 0.9982 0.0786 2.0007 0.0317
T=30 N=10 0.9926 0.1347 1.0008 0.0316 0.9915 0.1330 1.9996 0.0492
N=20 0.9968 0.0923 1.0004 0.0216 0.9969 0.0934 2.0003 0.0313
N=30 0.9974 0.0748 1.0000 0.0180 0.9980 0.0748 2.0000 0.0203
N=40 0.9984 0.0648 1.0002 0.0157 0.9962 0.0657 2.0002 0.0150
T=40 N=10 0.9932 0.1147 1.0005 0.0247 0.9951 0.1145 1.9997 0.0359
N=20 0.9975 0.0796 1.0001 0.0175 0.9981 0.0806 2.0003 0.0190
N=30 0.9996 0.0649 1.0000 0.0141 0.9976 0.0643 2.0002 0.0098
N=40 0.9980 0.0558 0.9999 0.0122 0.9993 0.0556 2.0001 0.0071

FD=first difference; CF=control function approach
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Table 6: Province(Canada) or State(US) in our data set

Canada US
Alberta Alaska Kentucky Ohio
British Columbia Alabama Louisiana Oklahoma
Manitoba Arkansas Massachusetts Oregon
New Brunswick Arizona Maryland Pennsylvania
Newfoundland and Labrador California Maine Puerto Rico
Nova Scotia Colorado Michigan Rhode Island
Ontario Connecticut Minnesota South Carolina
Prince Edward Island District of Columbia Missouri South Dakota
Quebec Delaware Mississippi Tennessee
Saskatchewan Florida Montana Texas
10 Georgia North Carolina Utah
Guam North Dakota Virginia
Hawaii Nebraska Vermont
Towa New Hampshire Washington
Idaho New Jersey Wisconsin
Illinois New Mexico West Virginia
Indiana Nevada Wyoming
Kansas New York
53
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Table 7: Correlation between unemployment rate and COVID-19
cases
Canada dataset

(1) (2) 3) (4)
Model OLS Threshold OLS Threshold
~(cases) 4.11 4.11
Blinear 0.5523*** 0.6728***
(0.1657) (0.3360)
Brow 0.4918*** 0.5955***
(0.1678) (0.3375)
Bhigh 2.0915%** 2.2618***
(0.6906) (0.7461)
Control function Linear Linear
Fixed effect v v v v
Niow 170 170
Nhigh 40 40
Niotal 210 210 210 210

#x o * indicate significant at 1% level, 5% level, 10% level, respectively.
Linearity test: Ho : Biow,0 = Bhigh,0, bootstrap p — value = 0.0001.
Endogeneity test: Hy: 840 =0, t = 19.76 > tg.01 = 2.617.

(Note By4g is the coefficient of Awv;. See Section 5 for detailed discussion.)
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Table 8: Correlation between unemployment rate and COVID-19
cases
US dataset

(1) (2) (3) (4)
Model OLS Threshold OLS Threshold
~(cases) 4.23 4.22
Blinear 0.0136*** 0.1013***
(0.0789) (0.093)

Brow —0.0726*** 0.0178"*

(0.0848) (0.0978)
Bhigh 0.5354*** 0.6207***

(0.2037) (0.2113)
Control function Linear Linear
Fixed effect v v v v
Nlow 488 482
Nhigh 500 506
Niotal 988 988 988 988

e * indicate significant at 1% level, 5% level, 10% level, respectively.
Linearity test: Hy : Biow,0 = Bhigh,0, bootstrap p — value = 0.0003.
Endogeneity test: Hy: 40 =0, t = 13.27 > tg.01 = 2.617.

(Note By0 is the coefficient of Awv;. See Section 5 for detailed discussion.)
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